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Abstract

A general solution to the field equations of an anisotropic liquid-saturated porous medium has been
obtained, in the transformed form, using the Fourier transform. Assuming the disturbances to be
harmonically time dependent, the transformed solution is obtained in the frequency domain. An
application of a time-harmonic concentrated force acting at some interior point of an infinite medium has
been considered to show the utility of the solution obtained. The transformed solutions are inverted
numerically, using a numerical inversion technique to invert the Fourier transform. The results in the form
of stress components have been obtained numerically and discussed graphically for a particular model. The
results of the corresponding problem in isotropic liquid-saturated porous medium can be derived as a
special case.
r 2003 Published by Elsevier Ltd.

1. Introduction

The liquid-saturated porous solids are often present on and below the surface of the earth. The
liquid-saturated porous medium is of great importance in the fields of earth sciences and
engineering. Recently, de Boer [1] presented a comprehensive review of the porous media theory.
Biot [2,3] developed a systematic theory of wave propagation in liquid-saturated porous solids,
and provides a potentially powerful tool for studying the behaviour of many kinds of porous
media. The classical poroelastic model of Biot has been widely used by various authors.
Deresiewicz and Skalak [4] derived the conditions sufficient for uniqueness of solution of the field
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equations of Biot’s theory of liquid-filled porous media. Burridge and Vargas [5] gave the
fundamental solution in dynamic poroelasticity theory given by Biot. Altay and Dokmeci [6]
proved the uniqueness of the solution of Biot poroelasticity equations.
Many researchers have discussed the different types of problems related to liquid-saturated

porous medium using different theories, e.g., Armero and Callari [7], Fellah and Depollier [8],
Reddy and Tajjuddin [9], Schanz and Cheng [10], etc. The various problems of the deformation of
the liquid-saturated porous medium have been discussed by many authors in many different ways,
e.g., Paul [11,12], Pal [13], Philippacopolous [14], Sharma [15], Sharma and Gogna [16],
Cederbaum [17], Kumar et al. [18,19], etc.
There are reasonable grounds for the assumption that anisotropy may exist in the continents.

Anisotropy has significant effects on the characteristics of various phenomena occurring in an
earthquakes, e.g., wave propagation. Therefore, many investigators have studied the problems
related to anisotropic liquid-saturated porous medium. Kazi-Aoual et al. [20] discussed the
Green’s function for transversely isotropic poroelastic medium. Sharma and Gogna [21] have
studied the wave propagation in anisotropic liquid-saturated porous solids. The wave propagation
theory in anisotropic periodically layered fluid-saturated porous media has been discussed by Sun
et al. [22]. Carcione [23] has discussed the plane wave theory and numerical simulation for wave
propagation in anisotropic liquid-saturated porous medium. Propagation of plane waves in
transversely isotropic fluid-saturated porous medium was studied by Wang and Zhang [24].
Sharma [25], considering a model involving a layer of transversely isotropic liquid-saturated
porous medium, discussed the dispersion in oceanic crust, which may help in identifying an
earthquake preparation region.
The solution of the dynamic problem in frequency domain is simpler than in the time domain.

As the time variable is missing in the frequency-domain formulation, the dynamic problem
become the static-like problem. Also, the solution in the frequency domain is important, whenever
we have to discuss the wave propagation phenomena. Therefore, many researchers have dealt
with the dynamical problems in frequency domain, e.g., Sato [26], Dominguez [27], Rajapakse and
Senjuntichai [28], etc.
The determination of the state of stress in the materials of the earth due to the presence of

certain sources is of great importance. The field of geomechanics, dealing with the various
phenomena occurring in an earthquake, deals with the problem of dynamic behaviour of an earth
material due to the presence of certain sources. Here, in this investigation, the dynamic behaviour
of a transversely isotropic liquid-saturated porous medium due to a time-harmonic concentrated
point force has been discussed, in frequency domain, by assuming the disturbances to be
harmonically time dependent.

2. Basic equations

Following Biot [2,3], the equations of motion for the liquid-saturated porous medium in the
absence of body forces, without dissipation are given as

sij; j ¼
@2

@t2
ðr11ui þ r12UiÞ; ð1Þ
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s;i ¼
@2

@t2
ðr12ui þ r22UiÞ ði ¼ x; y; zÞ; ð2Þ

where sij are the stress components in the solid, s ¼ �bp is the stress in the fluid ( p is the pressure
in the fluid and b is the porosity); ui; Ui ði ¼ x; y; zÞ are the components of the displacement
vectors in the solid and liquid parts, respectively, of the porous medium; r11; r12 and r22 are the
dynamical coefficients and are related to the mass densities of the solid rs and fluid rf as

r11 þ r12 ¼ ð1� bÞrs; r12 þ r22 ¼ brf ; ð3Þ

so that the mass density of the bulk material is

r ¼ r11 þ 2r12 þ r22 ¼ rs þ bð rf � rsÞ: ð4Þ

The stress–strain relations for the transversely isotropic liquid-saturated porous solid with
symmetry about the z-axis are given by Biot [29] as

sxx ¼ 2Nexx þ Aðexx þ eyyÞ þ Fezz þ Me;

syy ¼ 2Neyy þ Aðexx þ eyyÞ þ Fezz þ Me;

szz ¼Cezz þ Fðexx þ eyyÞ þ Qe;

syz ¼Leyz; sxz ¼ Lexz; sxy ¼ Nexy;

s ¼Mðexx þ eyyÞ þ Qezz þ Re; ð5Þ

where

eij ¼

@ui

@xj

; i ¼ j;

@ui

@xj

þ
@uj

@xi

; iaj;

8>><
>>: ð6Þ

e ¼
@U

@x
þ

@V

@y
þ

@W

@z
; ð7Þ

A; N; F ; M; C; Q; L and R are the elastic constants for transversely isotropic liquid-saturated
porous solid. These elastic constants can be reduced to that of isotropic liquid-saturated porous
solid through relations

F ¼ A; M ¼ Q; L ¼ N; C ¼ A þ 2N: ð8Þ

3. Formulation of the problem

A transversely isotropic liquid-saturated porous medium with symmetry about z-axis, taken
vertically downwards, has been considered. The problem considered is two-dimensional plane
strain, i.e., the field components along the y direction are zero and others are independent of
y-co-ordinate. An application of a time-harmonic concentrated point force acting at some point,
taken as origin, in the interior of an infinite medium along vertical direction, is considered, i.e., the
force is applied at the origin of the co-ordinate system along z-axis.
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4. Solution of the problem

We are assuming the disturbances to be harmonically time dependent ðeiotÞ; and since the
problem considered is two-dimensional plane strain, so we take

~uu ¼ ðu; 0;wÞ; ~UU ¼ ðU ; 0;W Þ ð9Þ

and

uðx; z; tÞ ¼ uðx; zÞeiot; wðx; z; tÞ ¼ wðx; zÞeiot;

Uðx; z; tÞ ¼ Uðx; zÞeiot; W ðx; z; tÞ ¼ W ðx; zÞeiot; ð10Þ

where ðu;wÞ and ðU ;W Þ represent the displacement components in the solid and liquid parts of
the porous aggregate, respectively; and ‘o’ is the angular frequency. Now, using the non-
dimensional variables and coefficients defined as

u0 ¼
u

h
; w0 ¼

w

h
; U 0 ¼

U

h
; W 0 ¼

W

h
;

x0 ¼
x

h
; z0 ¼

z

h
; t0 ¼

t

t�
; o0 ¼ ot�;

s0zz ¼
szz

C
; s0zx ¼

szx

C
; s0 ¼

s
C

ð11Þ

and

a2 ¼
Q

C
; b2 ¼

R

C
; c2 ¼

A þ 2N

C
;

d2 ¼
L

C
; e2 ¼

F þ L

C
; f 2 ¼

M

C
;

R11 ¼
r11
r
; R12 ¼

r12
r
; R22 ¼

r22
r
; ð12Þ

where

t� ¼ h

ffiffiffiffi
r
C

r
; ð13Þ

and ‘h’ has the dimension of length, and then applying the Fourier transformation, Sneddon [30],
with respect to ‘x’ defined as

f #uðq; zÞ; #wðq; zÞ; #Uðq; zÞ; #Wðq; zÞg ¼
Z

N

�N

fuðx; zÞ;wðx; zÞ;Uðx; zÞ;W ðx; zÞgeiqx dx ð14Þ

on the reduced non-dimensional form of equations. We obtain a system of four ordinary
differential equations, which is written in the matrix differential equation form (after suppressing
the primes) as

A1
.V þ B1

’V þ C1 ¼ 0; ð15Þ

where dot represents the differentiation with respect to z;

V ¼ ½ #u; #w; #U; #W 
T; T stands for transpose;
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A1 ¼

d2 0 0 0

0 1 0 a2

0 0 0 0

0 a2 0 b2

2
6664

3
7775; B1 ¼

0 �iqe2 0 �iq f 2

�iqe2 0 �iqa2 0

0 �iqa2 0 �iqb2

�iq f 2 0 �iqb2 0

2
6664

3
7775;

C1 ¼

�ðq2c2 þ H11Þ 0 �ðq2f 2 þ H12Þ 0

0 �ðq2d2 þ H11Þ 0 �H12

�ðq2f 2 þ H12Þ 0 �ðq2b2 þ H22Þ 0

0 �H12 0 �H22

2
6664

3
7775 ð16Þ

and

H11 ¼ �R11o2; H12 ¼ �R12o2; H22 ¼ �R22o2: ð17Þ

To solve the system of equations (15), we assume

V ðq; zÞ ¼ X ðqÞemz; ð18Þ

which gives us the characteristic equation

detðm2A1 þ mB1 þ C1Þ ¼ 0; ð19Þ

i.e.,

T0m
6 þ T1m

4 þ T2m
2 þ T3 ¼ 0; ð20Þ

where

T0 ¼ �d2H22X ; T1 ¼ T11 þ T12q
2;

T2 ¼ T21 þ T22q
2 þ T23q

4; T3 ¼ T31 þ T32q
2 þ T33q

4 þ T34q
6;

T11 ¼ ZX þ d2H22Y ; T12 ¼ ðXX 0
1 þ b2X1 þ f 2X2ÞH22;

T21 ¼ �ðY þ d2H22ÞZ;

T22 ¼ � ðX þ X 0ÞH11H22 þ 2ða2e2 � f 2 � a2c2 þ e2f 2ÞH12H22

�
þ 2b2d2Z þ ðX1 þ c2ÞH2

22 � 2ðb2e2 � a2f 2ÞH2
12

�
;

T23 ¼ � b2X1 þ c2X þ d2X 0 þ f 2X2

� �
H22;

T31 ¼ Z2; T32 ¼ ðY 0 þ d2H22ÞZ;

T33 ¼ X 0Z þ d2H22Y
0; T34 ¼ d2H22X

0

and

X ¼ b2 � a4; X 0 ¼ b2c2 � f 4;

X1 ¼ d4 � e4; X 0
1 ¼ c2 þ d2;

X2 ¼ 2a2e2 � f 2; Z ¼ H11H22 � H2
12;

Y ¼ b2H11 þ H22 � 2H12a
2; Y 0 ¼ b2H11 þ c2H22 � 2H12 f 2: ð21Þ
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Using Cardan’s method, Eq. (20) is reduced to

z3 þ 3Hz þ G ¼ 0; ð22Þ

where

z ¼ m2 þ
T1

3T0
;

H ¼ 1
3
ðT 0

2 �
1
3
T 02
1 Þ; G ¼ T 0

3 �
1
3
T 0
1T

0
2 þ

2
27

T 03
1 ;

T 0
1 ¼

T1

T0
; T 0

2 ¼
T2

T0
; T 0

3 ¼
T3

T0
: ð23Þ

The roots of Eq. (22) are given by

z ¼ r þ s; ð24Þ

where r and s are given by

r3 ¼
�G þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ 4H3

p
2

; s3 ¼
�G �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ 4H3

p
2

;

satisfying

rs ¼ �H:

Hence, roots of Eq. (20) are given by

m2
n ¼ zn �

T1

3T0
; n ¼ 1; 2; 3: ð25Þ

The eigenvectors X ðqÞ associated to different eigenvalues 7m1; 7m2 and 7m3 are obtained as

XT
i ¼ ½�k0

i; l
0
i ;�m0

i; n
0
i
; for m ¼ mi;

XT
iþ3 ¼ ½�k0

i; l
0
i ;�m0

i; n
0
i
; for m ¼ �mi; i ¼ 1; 2; 3; ð26Þ

where

n0
i ¼ ni1ni2 � ni3ni4; m0

i ¼ ni1mi1 � ni3mi2;

l0i ¼
1

ni1
½ni4m

0
i � mi2n

0
i
; k0

i ¼
1

ki4
½ki1l

0
i � ki2m

0
i þ ki3n

0
i
;

ki1 ¼ a2m2
i � H12; ki2 ¼ �iqmib

2;

ki3 ¼ b2m2
i � H22; ki4 ¼ �iqmi f 2;

mi1 ¼ iqmif f 2ð f 2q2 þ H12Þ þ b2ðd2m2
i � c2q2 � H11Þg;

mi2 ¼ f 2ða2m2
i � H12Þ � e2ðb2m2

i � H22Þ;

ni1 ¼ f 2ðm2
i � d2q2 � H11Þ � e2ða2m2

i � H12Þ;

ni2 ¼ ð f 2q2 þ H12Þ
2 þ ðb2q2 þ H22Þðd2m2

i � c2q2 � H11Þ;

ni3 ¼ iqmife2ð f 2q2 þ H12Þ þ a2ðd2m2
i � c2q2 � H11Þg;

ni4 ¼ �iqmiða2f 2 � b2e2Þ; i ¼ 1; 2; 3: ð27Þ
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Thus, a general solution of Eq. (15) in the transformed form, is obtained as

V ðq; zÞ ¼
X3
i¼1

fBiXiðqÞemiz þ Biþ3Xiþ3ðqÞe�mizg; ð28Þ

where Bi ði ¼ 1; 2; 3; 4; 5; 6Þ are arbitrary constants to be determined from the boundary
conditions. Using Eq. (10), a general solution for the two-dimensional plane strain problem of
a transversely liquid-saturated porous medium in the frequency domain, is obtained as

V ðq; z;oÞ ¼
X3
i¼1

fBiXiðqÞemiz þ Biþ3Xiþ3ðqÞe�mizgeiot: ð29Þ

5. Application

Let us consider a time-harmonic concentrated normal point force of magnitude F0 is acting
at the origin along the z direction in an infinite transversely isotropic liquid-saturated
porous medium. The appropriate boundary conditions in the present case at z ¼ 0 are
given as

uðx; 0þ;oÞ � uðx; 0�;oÞ ¼ 0; wðx; 0þ;oÞ � wðx; 0�;oÞ ¼ 0;

W ðx; 0þ;oÞ � W ðx; 0�;oÞ ¼ 0; szzðx; 0þ;oÞ � szzðx; 0�;oÞ ¼ �F0dðxÞeiot;

sxzðx; 0þ;oÞ � sxzðx; 0�;oÞ ¼ 0; sðx; 0þ;oÞ � sðx; 0�;oÞ ¼ F0dðxÞeiot: ð30Þ

Using Eqs. (11) and (14), these boundary conditions (30) can be written in the non-dimensional
transformed form (after suppressing the primes) as

#uðq; 0þ;oÞ � #uðq; 0�;oÞ ¼ 0; #wðq; 0þ;oÞ � #wðq; 0�;oÞ ¼ 0;

#Wðq; 0þ;oÞ � #Wðq; 0�;oÞ ¼ 0; #szzðq; 0þ;oÞ � #szzðq; 0�;oÞ ¼ �F0e
iot;

#sxzðq; 0þ;oÞ � #sxzðq; 0�;oÞ ¼ 0; #sðq; 0þ;oÞ � #sðq; 0�;oÞ ¼ F0e
iot: ð31Þ

Now, from Eqs. (5)–(7), after reducing them to non-dimensional transformed form by using
Eqs. (11), (12) and (14), and with the help of Eq. (29), we obtain the displacement and stress
components in the transformed form (after suppressing the primes) as

#uðq; z;oÞ ¼ �
X3
i¼1

Biþjk
0
ie
�gzmi � eiot; #wðq; z;oÞ ¼

X3
i¼1

Biþj l
0
ie

�gzmi � eiot;

#Uðq; z;oÞ ¼ �
X3
i¼1

Biþjm
0
ie
�gzmi � eiot; #Wðq; z;oÞ ¼

X3
i¼1

Biþjn
0
ie
�gzmi � eiot;

#szzðq; z;oÞ ¼
X3
i¼1

BiþjPiþje
�gzmi � eiot; #sxzðq; z;oÞ ¼

X3
i¼1

BiþjRiþje
�gzmi � eiot;

#sðq; z;oÞ ¼
X3
i¼1

BiþjHiþje
�gzmi � eiot; ð32Þ
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where

g ¼ signðzÞ and
j ¼ 0 if zo0;

j ¼ 3 if z > 0

(
ð33Þ

and

Pi ¼ l0imi þ iqðe2 � d2Þk0
i þ a2n0imi þ iqa2m0

i;

Piþ3 ¼ �l0imi þ iqðe2 � d2Þk0
i � a2n0imi þ iqa2m0

i;

Ri ¼ �ðk0
imi þ iql0iÞd

2; Riþ3 ¼ ðk0
imi � iql0iÞd

2;

Hi ¼ a2l0imi þ iq f 2k0
i þ b2n0

imi þ iqb2m0
i;

Hiþ3 ¼ �a2l0imi þ iq f 2k0
i � b2n0

imi þ iqb2m0
i; i ¼ 1; 2; 3: ð34Þ

Substituting the transformed displacements and stresses given by Eq. (32) in the transformed
boundary conditions (31), we obtain a system of six equations in six unknowns B1; B2; B3; B4; B5

and B6; which on solving gives

B4 ¼ B1 ¼ �s1
ðt3 þ r3Þs2 � ðt2 þ r2Þs3

D
F0;

B5 ¼ B2 ¼ s1
ðt3 þ r3Þs1 � ðt1 þ r1Þs3

D
F0;

B6 ¼ B3 ¼ �s1
ðt2 þ r2Þs1 � ðt1 þ r1Þs2

D
F0; ð35Þ

where

D ¼ ðt2s1 � t1s2Þðr3s1 � r1s3Þ � ðr2s1 � r1s2Þðt3s1 � t1s3Þ;

rn ¼ Pnþ3 � Pn; sn ¼ Rnþ3 � Rn; tn ¼ Hnþ3 � Hn; n ¼ 1; 2; 3: ð36Þ

Thus, expressions (32) give the displacement and stress components with the help of Eqs. (35)
and (36) in the transformed form, in frequency domain, for an infinite transversely isotropic fluid-
saturated porous medium due to a time-harmonic concentrated normal point force acting along
the z-axis. These, displacement and stress components in the transformed form, on inversion
enable us to give the displacement and stress components in the physical form. To invert the
Fourier transforms in the transformed form expressions, we make use of a numerical inversion
technique to get the results in the physical form, numerically.

6. Special cases

(i) With the help of relations (8), we obtain the solution of the problem for isotropic liquid-
saturated porous medium. The resulting solution of the problem agree well with the one obtained
by Kumar et al. [18] with suitable change in notations as

a2 ¼ f 2 ¼ b2; b2 ¼ d2; d2 ¼ a2

e2 ¼ 1� a2; o2 ¼ �p2; ð37Þ

and taking the dissipation factor as zero.
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(ii) Further, in the limiting case of b; Q; R-0; and taking A ¼ l and N ¼ m; we obtain the
solution of the problem in classical elastic medium, which is known as Lamb’s problem.

7. Inversion of the transforms

The transformed solutions are functions of depth variable ‘z’, the Fourier transform parameter
q and the frequency o; and hence are of the form #fðq; z;oÞ: To get the function f ðx; z;oÞ in the
physical form, we invert the Fourier transform by using

f ðx; z;oÞ ¼
1

2p

Z
N

�N

e�iqx #fðq; z;oÞ dq

¼
1

p

Z
N

0

ðcosðqxÞfe � i sinðqxÞfoÞ dq; ð38Þ

where fe and fo are even and odd parts of the function #fðq; z;oÞ; respectively. Thus, expression (38)
gives us the function f ðx; z;oÞ: Now, we have to evaluate the integral in Eq. (38) and the method
for evaluating the integral is described by Press et al. [31], which involves the use of Romberg’s
integration with adaptive step size. This, also uses the results from successive refinements of the
extended trapezoidal rule followed by extrapolation of the results to the limit when the step size
tends to zero.

8. Numerical results and discussion

Numerical calculations are made by considering a particular model of a transversely isotropic
liquid-saturated porous medium. In the model considered, the elastic constants for the
transversely isotropic liquid-saturated porous medium are chosen as

A ¼ 4:43� 1010 dyn=cm2; F ¼ fA;

Q ¼ 0:743� 1010 dyn=cm2; M ¼ mQ;

N ¼ 2:765� 1010 dyn=cm2; L ¼ nN ;

R ¼ 0:326� 1010 dyn=cm2; C ¼ F þ 2L:

For f ¼ m ¼ n ¼ 1:0; these constants represent the elastic constants of an isotropic kerosene-
saturated sandstone, Fatt [32]. The dynamical coefficients are given as

r11 ¼ 1:926 g=cm3; r12 ¼ �0:00214 g=cm3; r22 ¼ 0:21534 g=cm3;

Also, we have considered

F 0
0 ¼

F0

C
¼ 1:0 and t ¼ 1:0:
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The anisotropy of the medium is represented by a set of values of the parameters, f ; m; n:Here, we
take

f ¼ 1:5; m ¼ 1:2; n ¼ 2:0;

but, one can take some other set of values, also.
The stress components, representing the dynamical behaviour, are calculated on the plane

z ¼ 1:0 against non-dimensional distance ‘x’ for three different values of non-dimensional
frequency ‘o’, i.e., o ¼ 1:0; 2.0 and 5.0, taking the medium to be transversely isotropic liquid-
saturated porous solid. The stress distribution curves are shown in Figs. 1–3. Further, the stress
distribution curves of transversely isotropic as well as isotropic liquid-saturated porous medium
are plotted for one fixed value of non-dimensional frequency ‘o’, i.e., o ¼ 2:0; in Figs. 4–6,
depicting the effect of transverse isotropy.
From Figs. 1–3, it is observed that the maximum (absolute) stresses occur corresponding to

minimum frequency ðo ¼ 1:0Þ; i.e., the impact of a time-harmonic impulsive force is large for
small frequencies. Further, it is observed that the impact of the applied force goes on decreasing
with increase in frequency. It is clear from Figs. 1–3, that the stress components are approaching
towards zero value with reference to frequency ‘o’. But, this approach towards zero value is not
uniform for all the cases. This is due to the fact that the medium considered is liquid-saturated
porous, which is a two-phase medium involving an elastic solid matrix with pores saturated with
fluid. The disturbances travelling through these different constituents of the medium suffer sudden
changes, resulting in an inconsistent/non-uniform approach towards zero value. Otherwise, when
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Fig. 1. Normal stress distribution in the solid part of the transversely isotropic porous aggregate at the level z ¼ 1:0:
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Fig. 2. Tangential stress distribution in the solid part of the transversely isotropic porous aggregate at the level z ¼ 1:0:

Fig. 3. Normal stress distribution in the liquid part of the transversely isotropic porous aggregate at the level z ¼ 1:0:
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Fig. 4. Normal stress distribution in the solid part of the porous aggregate at the level z ¼ 1:0:

Fig. 5. Tangential stress distribution in the solid part of the porous aggregate at the level z ¼ 1:0:
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it passes through either solid or liquid, it shows a uniform change. It is observed that the
magnitude of displacement and stress components increase or decrease along an oscillatory path
with the increase in distance ‘x’. It is revealed that with the increase in distance each distribution
curve follow an oscillatory pattern.
Figs. 4–6 show the change in distribution curves of isotropic liquid-saturated porous

medium due to transverse isotropy of the porous medium. That means, the transverse
isotropy of the porous medium affects the disturbances produced due to time-harmonic
impulsive force. It is observed that the effect is mainly on the magnitude of stresses. This
effect is in the form of decrease in the range of values of the distribution curves. This decrease in
the range of values is also not uniform due to the complexity of the medium considered. It is also
observed that the transverse isotropy of the liquid-saturated porous medium disturb the
oscillatory pattern of the distribution curves of isotropic liquid-saturated porous medium. It is
revealed that the effect of transverse isotropy of the porous medium is mainly quantitative in
nature.
The trend of curves exhibits the properties of liquid-saturated porous medium. The

disturbances produced in the liquid-saturated porous medium are affected by anisotropy of the
medium, which in turn will effect the various phenomena, e.g., wave propagation. The results of
this problem are very useful in the two-dimensional treatment of the dynamic response due to
impulsive harmonic sources of the poroelastic solids, which has various application in the fields of
geomechanics and engineering.
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Fig. 6. Normal stress distribution in the liquid part of the porous aggregate at the level z ¼ 1:0:
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Appendix. Nomenclature

A; N; F ; M; elastic constants for transversely isotropic liquid-saturated porous medium
C; Q; L; R
r11; r12; r22 dynamical coefficients
rs; rf ; r mass densities of the solid, fluid, bulk material
b porosity
o angular frequency
t time variable
x; y; z cartesian co-ordinates
ui; Ui components of displacements in the solid and liquid parts of the porous aggregate

along xi direction
~uu; ~UU displacement vectors in the solid and liquid parts of the porous aggregate
u; w tangential and normal components of the displacement in the solid part
U ; W tangential and normal components of the displacement in the liquid part
p pressure in the fluid
sij components of stress in the solid part
s stress in the fluid part
eij components of strain in the solid part
e dilatation in the solid part
e dilatation in the liquid part
h a quantity having the dimension of length
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